Perturbed message passing for constraint satisfaction problems

نویسندگان

  • Siamak Ravanbakhsh
  • Russell Greiner
چکیده

We introduce an efficient message passing scheme for solving Constraint Satisfaction Problems (CSPs), which uses stochastic perturbation of Belief Propagation (BP) and Survey Propagation (SP) messages to bypass decimation and directly produce a single satisfying assignment. Our first CSP solver, called Perturbed Belief Propagation, smoothly interpolates two well-known inference procedures; it starts as BP and ends as a Gibbs sampler, which produces a single sample from the set of solutions. Moreover we apply a similar perturbation scheme to SP to produce another CSP solver, Perturbed Survey Propagation. Experimental results on random and real-world CSPs show that Perturbed BP is often more successful and at the same time tens to hundreds of times more efficient than standard BP guided decimation. Perturbed BP also compares favorably with state-ofthe-art SP-guided decimation, which has a computational complexity that generally scales exponentially worse than our method (w.r.t. the cardinality of variable domains and constraints). Furthermore, our experiments with random satisfiability and coloring problems demonstrate that Perturbed SP can outperform SP-guided decimation, making it the best incomplete random CSP-solver in difficult regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbed Message Passing for CSP Perturbed Message Passing for Constraint Satisfaction Problems

We introduce an efficient message passing scheme for solving Constraint Satisfaction Problems (CSPs), which uses stochastic perturbation of Belief Propagation (BP) and Survey Propagation (SP) messages to bypass decimation and directly produce a single satisfying assignment. Our first CSP solver, called Perturbed Belief Propagation, smoothly interpolates two well-known inference procedures; it s...

متن کامل

Survey Propagation: Iterative Solutions to Constraint Satisfaction Problems

Iterative algorithms, such as the well known Belief Propagation algorithm, have had much success in solving problems in statistical inference and coding and information theory. Survey Propagation attempts to apply iterative message passing algorithms to solve difficult combinatorial problems, in particular constraint satisfaction problems such as k-sat and coloring problems. Intuition from stat...

متن کامل

Message passing in random satisfiability problems

This talk surveys the recent development of message passing procedures for solving constraint satisfaction problems. The cavity method from statistical physics provides a generalization of the belief propagation strategy that is able to deal with the clustering of solutions in these problems. It allows to derive analytic results on their phase diagrams, and offers a new algorithmic framework.

متن کامل

Yedidia Message - passing Algorithms for Inference and Optimization : “ Belief Propagation ” and “ Divide and Concur ”

Message-passing algorithms can solve a wide variety of optimization, inference, and constraint satisfaction problems. The algorithms operate on factor graphs that visually represent the problems. After describing some of their applications, I survey the family of belief propagation (BP) algorithms, beginning with a detailed description of the min-sum algorithm and its exactness on tree factor g...

متن کامل

Susceptibility Propagation for Constraint Satisfaction Problems

We study the susceptibility propagation, a message-passing algorithm to compute correlation functions. It is applied to constraint satisfaction problems and its accuracy is examined. As a heuristic method to find a satisfying assignment, we propose susceptibility-guided decimation where correlations among the variables play an important role. We apply this novel decimation to locked occupation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015